direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C23.7D4, C24.45D4, C23.6C24, C24.470C23, 2+ (1+4).12C22, (C2×D4).148D4, C22⋊C4⋊2C23, C23⋊C4⋊6C22, (C22×C4)⋊8C23, C23.25(C2×D4), (C23×C4)⋊14C22, (C2×D4).40C23, (C22×C4).114D4, C22.26C22≀C2, C22.40(C22×D4), (C2×2+ (1+4)).9C2, (C22×D4).333C22, C22.D4⋊28C22, (C2×C4).26(C2×D4), (C2×C23⋊C4)⋊17C2, C2.61(C2×C22≀C2), (C2×C22⋊C4)⋊37C22, (C2×C22.D4)⋊47C2, SmallGroup(128,1756)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 836 in 397 conjugacy classes, 108 normal (8 characteristic)
C1, C2, C2 [×2], C2 [×12], C4 [×14], C22, C22 [×6], C22 [×35], C2×C4 [×6], C2×C4 [×40], D4 [×36], Q8 [×4], C23, C23 [×12], C23 [×20], C22⋊C4 [×6], C22⋊C4 [×15], C4⋊C4 [×12], C22×C4 [×5], C22×C4 [×12], C2×D4 [×12], C2×D4 [×39], C2×Q8, C4○D4 [×24], C24, C24 [×3], C24, C23⋊C4 [×12], C2×C22⋊C4 [×3], C2×C22⋊C4 [×3], C2×C4⋊C4 [×3], C22.D4 [×12], C22.D4 [×6], C23×C4, C22×D4 [×3], C22×D4 [×3], C2×C4○D4 [×3], 2+ (1+4) [×4], 2+ (1+4) [×6], C2×C23⋊C4 [×3], C23.7D4 [×8], C2×C22.D4 [×3], C2×2+ (1+4), C2×C23.7D4
Quotients:
C1, C2 [×15], C22 [×35], D4 [×12], C23 [×15], C2×D4 [×18], C24, C22≀C2 [×4], C22×D4 [×3], C23.7D4 [×2], C2×C22≀C2, C2×C23.7D4
Generators and relations
G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=1, f2=d, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, ebe-1=fbf-1=bcd, ece-1=cd=dc, cf=fc, de=ed, df=fd, fef-1=de-1 >
(1 30)(2 31)(3 32)(4 29)(5 15)(6 16)(7 13)(8 14)(9 23)(10 24)(11 21)(12 22)(17 27)(18 28)(19 25)(20 26)
(2 31)(3 26)(4 17)(5 21)(6 16)(8 10)(11 15)(12 22)(14 24)(19 25)(20 32)(27 29)
(1 18)(2 31)(3 20)(4 29)(5 15)(6 12)(7 13)(8 10)(9 23)(11 21)(14 24)(16 22)(17 27)(19 25)(26 32)(28 30)
(1 28)(2 25)(3 26)(4 27)(5 21)(6 22)(7 23)(8 24)(9 13)(10 14)(11 15)(12 16)(17 29)(18 30)(19 31)(20 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 6 28 22)(2 21 25 5)(3 8 26 24)(4 23 27 7)(9 17 13 29)(10 32 14 20)(11 19 15 31)(12 30 16 18)
G:=sub<Sym(32)| (1,30)(2,31)(3,32)(4,29)(5,15)(6,16)(7,13)(8,14)(9,23)(10,24)(11,21)(12,22)(17,27)(18,28)(19,25)(20,26), (2,31)(3,26)(4,17)(5,21)(6,16)(8,10)(11,15)(12,22)(14,24)(19,25)(20,32)(27,29), (1,18)(2,31)(3,20)(4,29)(5,15)(6,12)(7,13)(8,10)(9,23)(11,21)(14,24)(16,22)(17,27)(19,25)(26,32)(28,30), (1,28)(2,25)(3,26)(4,27)(5,21)(6,22)(7,23)(8,24)(9,13)(10,14)(11,15)(12,16)(17,29)(18,30)(19,31)(20,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6,28,22)(2,21,25,5)(3,8,26,24)(4,23,27,7)(9,17,13,29)(10,32,14,20)(11,19,15,31)(12,30,16,18)>;
G:=Group( (1,30)(2,31)(3,32)(4,29)(5,15)(6,16)(7,13)(8,14)(9,23)(10,24)(11,21)(12,22)(17,27)(18,28)(19,25)(20,26), (2,31)(3,26)(4,17)(5,21)(6,16)(8,10)(11,15)(12,22)(14,24)(19,25)(20,32)(27,29), (1,18)(2,31)(3,20)(4,29)(5,15)(6,12)(7,13)(8,10)(9,23)(11,21)(14,24)(16,22)(17,27)(19,25)(26,32)(28,30), (1,28)(2,25)(3,26)(4,27)(5,21)(6,22)(7,23)(8,24)(9,13)(10,14)(11,15)(12,16)(17,29)(18,30)(19,31)(20,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6,28,22)(2,21,25,5)(3,8,26,24)(4,23,27,7)(9,17,13,29)(10,32,14,20)(11,19,15,31)(12,30,16,18) );
G=PermutationGroup([(1,30),(2,31),(3,32),(4,29),(5,15),(6,16),(7,13),(8,14),(9,23),(10,24),(11,21),(12,22),(17,27),(18,28),(19,25),(20,26)], [(2,31),(3,26),(4,17),(5,21),(6,16),(8,10),(11,15),(12,22),(14,24),(19,25),(20,32),(27,29)], [(1,18),(2,31),(3,20),(4,29),(5,15),(6,12),(7,13),(8,10),(9,23),(11,21),(14,24),(16,22),(17,27),(19,25),(26,32),(28,30)], [(1,28),(2,25),(3,26),(4,27),(5,21),(6,22),(7,23),(8,24),(9,13),(10,14),(11,15),(12,16),(17,29),(18,30),(19,31),(20,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,6,28,22),(2,21,25,5),(3,8,26,24),(4,23,27,7),(9,17,13,29),(10,32,14,20),(11,19,15,31),(12,30,16,18)])
Matrix representation ►G ⊆ GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 4 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 4 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 4 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 2 |
0 | 0 | 0 | 0 | 0 | 3 |
0 | 0 | 3 | 3 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,4,1,0,0,0,0,0,0,4,0,0,0,0,0,4,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,1,0,0,0,0,4,0,0,0,0,0,0,0,0,0,3,4,0,0,0,0,3,2,0,0,2,0,0,0,0,0,2,3,0,0],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,3,4,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,3] >;
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | ··· | 2O | 4A | ··· | 4J | 4K | ··· | 4P |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | C23.7D4 |
kernel | C2×C23.7D4 | C2×C23⋊C4 | C23.7D4 | C2×C22.D4 | C2×2+ (1+4) | C22×C4 | C2×D4 | C24 | C2 |
# reps | 1 | 3 | 8 | 3 | 1 | 3 | 6 | 3 | 4 |
In GAP, Magma, Sage, TeX
C_2\times C_2^3._7D_4
% in TeX
G:=Group("C2xC2^3.7D4");
// GroupNames label
G:=SmallGroup(128,1756);
// by ID
G=gap.SmallGroup(128,1756);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,758,718,2028]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=1,f^2=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,e*b*e^-1=f*b*f^-1=b*c*d,e*c*e^-1=c*d=d*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=d*e^-1>;
// generators/relations